Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480091

RESUMO

Aromatic amino acids (AAAs) are essential for synthesis of proteins and numerous plant natural products, yet how plants maintain AAA homeostasis remains poorly understood. Wu et al. reported that the aminotransferase VAS1 plays a role in AAA homeostasis by transferring nitrogen from AAAs to non-proteinogenic amino acids, 3-carboxytyrosine and 3-carboxyphenylalanine.

2.
Plant Physiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498597

RESUMO

Synthetic biology provides emerging tools to produce valuable compounds in plant hosts as sustainable chemical production platforms. However, little is known about how supply and utilization of precursors is coordinated at the interface of plant primary and specialized metabolism, limiting our ability to efficiently produce high levels of target specialized metabolites in plants. L-Tyrosine is an aromatic amino acid precursor of diverse plant natural products including betalain pigments, which are used as the major natural food red colorants and more recently a visual marker for plant transformation. Here, we studied the impact of enhanced L-tyrosine supply on the production of betalain pigments by expressing arogenate dehydrogenase (TyrA) from table beet (Beta vulgaris, BvTyrAα), which has relaxed feedback inhibition by L-tyrosine. Unexpectedly, betalain levels were reduced when BvTyrAα was co-expressed with the betalain pathway genes in Nicotiana benthamiana leaves; L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) levels were drastically elevated but not efficiently converted to betalains. An additional expression of L-DOPA 4,5-dioxygenase (DODA), but not CYP76AD1 or cyclo-DOPA 5-O-glucosyltransferase, together with BvTyrAα and the betalain pathway, drastically enhanced betalain production, indicating that DODA is a major rate-limiting step of betalain biosynthesis in this system. Learning from this initial test and further debottlenecking the DODA step maximized betalain yield to an equivalent or higher level than that in table beet. Our data suggest that balancing between enhanced supply ("push") and effective utilization ("pull") of precursor by alleviating a bottleneck step is critical in successful plant synthetic biology to produce high levels of target compounds.

3.
Nat Commun ; 14(1): 7242, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945591

RESUMO

Vascular plants direct large amounts of carbon to produce the aromatic amino acid phenylalanine to support the production of lignin and other phenylpropanoids. Uniquely, grasses, which include many major crops, can synthesize lignin and phenylpropanoids from both phenylalanine and tyrosine. However, how grasses regulate aromatic amino acid biosynthesis to feed this dual lignin pathway is unknown. Here we show, by stable-isotope labeling, that grasses produce tyrosine >10-times faster than Arabidopsis without compromising phenylalanine biosynthesis. Detailed in vitro enzyme characterization and combinatorial in planta expression uncovered that coordinated expression of specific enzyme isoforms at the entry and exit steps of the aromatic amino acid pathway enables grasses to maintain high production of both tyrosine and phenylalanine, the precursors of the dual lignin pathway. These findings highlight the complex regulation of plant aromatic amino acid biosynthesis and provide novel genetic tools to engineer the interface of primary and specialized metabolism in plants.


Assuntos
Arabidopsis , Lignina , Lignina/metabolismo , Poaceae/genética , Poaceae/metabolismo , Aminoácidos Aromáticos/metabolismo , Plantas/metabolismo , Fenilalanina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tirosina/metabolismo
4.
J Biol Chem ; 299(3): 102939, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702250

RESUMO

Aminotransferases (ATs) catalyze pyridoxal 5'-phosphate-dependent transamination reactions between amino donor and keto acceptor substrates and play central roles in nitrogen metabolism of all organisms. ATs are involved in the biosynthesis and degradation of both proteinogenic and nonproteinogenic amino acids and also carry out a wide variety of functions in photorespiration, detoxification, and secondary metabolism. Despite the importance of ATs, their functionality is poorly understood as only a small fraction of putative ATs, predicted from DNA sequences, are associated with experimental data. Even for characterized ATs, the full spectrum of substrate specificity, among many potential substrates, has not been explored in most cases. This is largely due to the lack of suitable high-throughput assays that can screen for AT activity and specificity at scale. Here we present a new high-throughput platform for screening AT activity using bioconjugate chemistry and mass spectrometry imaging-based analysis. Detection of AT reaction products is achieved by forming an oxime linkage between the ketone groups of transaminated amino donors and a probe molecule that facilitates mass spectrometry-based analysis using nanostructure-initiator mass spectrometry or MALDI-mass spectrometry. As a proof-of-principle, we applied the newly established method and found that a previously uncharacterized Arabidopsis thaliana tryptophan AT-related protein 1 is a highly promiscuous enzyme that can utilize 13 amino acid donors and three keto acid acceptors. These results demonstrate that this oxime-mass spectrometry imaging AT assay enables high-throughput discovery and comprehensive characterization of AT enzymes, leading to an accurate understanding of the nitrogen metabolic network.


Assuntos
Aminoácidos , Ensaios Enzimáticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transaminases , Aminoácidos/metabolismo , Especificidade por Substrato , Transaminases/química , Transaminases/metabolismo , Ensaios Enzimáticos/métodos , Arabidopsis/enzimologia
5.
Methods Enzymol ; 680: 35-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710018

RESUMO

Aromatic aminotransferases (Aro ATs) are pyridoxal-5-phosphate (PLP)-dependent enzymes that catalyze the transamination reactions of an aromatic amino acid (AAA) or a keto acid. Aro ATs are involved in biosynthesis or degradation of AAAs and play important functions in controlling the production of plant hormones and secondary metabolites, such as auxin, tocopherols, flavonoids, and lignin. Most Aro ATs show substrate promiscuity and can accept multiple aromatic and non-aromatic amino and keto acid substrates, which complicates and limits our understanding of their in planta functions. Considering the critical roles Aro ATs play in plant primary and secondary metabolism, it is important to accurately determine substrate specificity and kinetic properties of Aro ATs. This chapter describes various methodologies of protein expression, purification and enzymatic assays, which can be used for biochemical characterization of Aro ATs.


Assuntos
Fosfato de Piridoxal , Transaminases , Transaminases/química , Transaminases/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Cetoácidos , Aminoácidos Aromáticos , Especificidade por Substrato
7.
Plant J ; 111(5): 1486-1500, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819300

RESUMO

Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating 15 N isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future 15 N-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Isótopos de Carbono/metabolismo , Marcação por Isótopo/métodos , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Modelos Biológicos , Fluxo de Trabalho
8.
Sci Adv ; 8(23): eabo3416, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675400

RESUMO

Aromatic compounds having unusual stability provide high-value chemicals and considerable promise for carbon storage. Terrestrial plants can convert atmospheric CO2 into diverse and abundant aromatic compounds. However, it is unclear how plants control the shikimate pathway that connects the photosynthetic carbon fixation with the biosynthesis of aromatic amino acids, the major precursors of plant aromatic natural products. This study identified suppressor of tyra2 (sota) mutations that deregulate the first step in the plant shikimate pathway by alleviating multiple effector-mediated feedback regulation in Arabidopsis thaliana. The sota mutant plants showed hyperaccumulation of aromatic amino acids accompanied by up to a 30% increase in net CO2 assimilation. The identified mutations can be used to enhance plant-based, sustainable conversion of atmospheric CO2 to high-energy and high-value aromatic compounds.

9.
J Biol Chem ; 298(8): 102122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697072

RESUMO

Aminotransferases (ATs) are pyridoxal 5'-phosphate-dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure-function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.


Assuntos
Fosfato de Piridoxal , Transaminases , Evolução Biológica , Nitrogênio/metabolismo , Fosfato de Piridoxal/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Transaminases/metabolismo
10.
Curr Opin Plant Biol ; 67: 102219, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550985

RESUMO

The shikimate pathway connects the central carbon metabolism with the biosynthesis of aromatic amino acids-l-tyrosine, l-phenylalanine, and l-tryptophan-which play indispensable roles as precursors of numerous aromatic phytochemicals. Despite the importance of the shikimate pathway-derived products for both plant physiology and human society, the regulatory mechanism of the shikimate pathway remains elusive. This review summarizes the recent progress and current understanding on the plant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase or DHS) enzymes that catalyze the committed reaction of the shikimate pathway. We particularly focus on how the DHS activity is regulated in plants in comparison to those of microbes and discuss potential roles of DHS as the critical gatekeeper for the production of plant aromatic compounds.


Assuntos
Produtos Biológicos , Fosfatos , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Tirosina/química , Tirosina/metabolismo
11.
Plant J ; 109(4): 844-855, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807484

RESUMO

l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.


Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese , Plantas/genética , Plantas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Betalaínas/biossíntese , Caryophyllales/genética , Caryophyllales/metabolismo , Fabaceae , Complexos Multienzimáticos/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo
12.
Plant J ; 108(3): 737-751, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403557

RESUMO

Out of the three aromatic amino acids, the highest flux in plants is directed towards phenylalanine, which is utilized to synthesize proteins and thousands of phenolic metabolites contributing to plant fitness. Phenylalanine is produced predominantly in plastids via the shikimate pathway and subsequent arogenate pathway, both of which are subject to complex transcriptional and post-transcriptional regulation. Previously, it was shown that allosteric feedback inhibition of arogenate dehydratase (ADT), which catalyzes the final step of the arogenate pathway, restricts flux through phenylalanine biosynthesis. Here, we show that in petunia (Petunia hybrida) flowers, which typically produce high phenylalanine levels, ADT regulation is relaxed, but not eliminated. Moderate expression of a feedback-insensitive ADT increased flux towards phenylalanine, while high overexpression paradoxically reduced phenylalanine formation. This reduction could be partially, but not fully, recovered by bypassing other known metabolic flux control points in the aromatic amino acid network. Using comparative transcriptomics, reverse genetics, and metabolic flux analysis, we discovered that transcriptional regulation of the d-ribulose-5-phosphate 3-epimerase gene in the pentose phosphate pathway controls flux into the shikimate pathway. Taken together, our findings reveal that regulation within and upstream of the shikimate pathway shares control over phenylalanine biosynthesis in the plant cell.


Assuntos
Hidroliases/genética , Petunia/genética , Petunia/metabolismo , Fenilalanina/biossíntese , Proteínas de Plantas/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroliases/metabolismo , Mutação , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Metabolismo Secundário/genética , Ácido Chiquímico/metabolismo
13.
Plant J ; 107(5): 1283-1298, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250670

RESUMO

Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biotina/biossíntese , Cadaverina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Transaminases/metabolismo , Acetil-CoA Carboxilase/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biotinilação , Carbono-Nitrogênio Ligases/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transaminases/genética
14.
Plant Cell ; 33(3): 671-696, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955484

RESUMO

The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.


Assuntos
Plântula/metabolismo , Triptofano/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Cicloexenos/metabolismo , Fenilalanina/metabolismo , Ácido Chiquímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
15.
Plant Physiol ; 185(3): 857-875, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793871

RESUMO

The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.


Assuntos
Aciltransferases/metabolismo , Arabidopsis/metabolismo , Policetídeo Sintases/metabolismo , Solanum lycopersicum/metabolismo , Zea mays/metabolismo , Aciltransferases/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Filogenia , Policetídeo Sintases/genética , Zea mays/genética
16.
Annu Rev Plant Biol ; 72: 185-216, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33848429

RESUMO

Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.


Assuntos
Transferência Genética Horizontal , Plantas , Eucariotos , Evolução Molecular , Duplicação Gênica , Redes e Vias Metabólicas , Filogenia
17.
Plant Direct ; 4(5): e00218, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32368714

RESUMO

l-Tyrosine (Tyr) is an aromatic amino acid synthesized de novo in plants and microbes downstream of the shikimate pathway. In plants, Tyr and a Tyr pathway intermediate, 4-hydroxyphenylpyruvate (HPP), are precursors to numerous specialized metabolites, which are crucial for plant and human health. Tyr is synthesized in the plastids by a TyrA family enzyme, arogenate dehydrogenase (ADH/TyrAa), which is feedback inhibited by Tyr. Additionally, many legumes possess prephenate dehydrogenases (PDH/TyrAp), which are insensitive to Tyr and localized to the cytosol. Yet the role of PDH enzymes in legumes is currently unknown. This study isolated and characterized Tnt1-transposon mutants of MtPDH1 (pdh1) in Medicago truncatula to investigate PDH function. The pdh1 mutants lacked PDH transcript and PDH activity, and displayed little aberrant morphological phenotypes under standard growth conditions, providing genetic evidence that MtPDH1 is responsible for the PDH activity detected in M. truncatula. Though plant PDH enzymes and activity have been specifically found in legumes, nodule number and nitrogenase activity of pdh1 mutants were not significantly reduced compared with wild-type (Wt) during symbiosis with nitrogen-fixing bacteria. Although Tyr levels were not significantly different between Wt and mutants under standard conditions, when carbon flux was increased by shikimate precursor feeding, mutants accumulated significantly less Tyr than Wt. These data suggest that MtPDH1 is involved in Tyr biosynthesis when the shikimate pathway is stimulated and possibly linked to unidentified legume-specific specialized metabolism.

18.
J Biol Chem ; 294(45): 16549-16566, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31558606

RESUMO

Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.


Assuntos
Evolução Biológica , Plantas/metabolismo , Aminoácidos/biossíntese , Produtos Biológicos/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Fenilalanina/biossíntese , Proteínas de Plantas/metabolismo , Plantas/genética , Especificidade por Substrato
19.
Front Plant Sci ; 10: 881, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354760

RESUMO

Plants produce a diverse array of lineage-specific specialized (secondary) metabolites, which are synthesized from primary metabolites. Plant specialized metabolites play crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-documented diversification of plant specialized metabolic enzymes, primary metabolism that provides essential compounds for cellular homeostasis is under strong selection pressure and generally assumed to be conserved across the plant kingdom. Yet, some alterations in primary metabolic pathways have been reported in plants. The biosynthetic pathways of certain amino acids and lipids have been altered in specific plant lineages. Also, two alternative pathways exist in plants for synthesizing primary precursors of the two major classes of plant specialized metabolites, terpenoids and phenylpropanoids. Such primary metabolic diversities likely underlie major evolutionary changes in plant metabolism and chemical diversity by acting as enabling or associated traits for the evolution of specialized metabolic pathways.

20.
Arch Biochem Biophys ; 665: 12-19, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771296

RESUMO

L-Tyrosine is an aromatic amino acid necessary for protein synthesis in all living organisms and a precursor of secondary (specialized) metabolites. In fungi, tyrosine-derived compounds are associated with virulence and defense (i.e. melanin production). However, how tyrosine is produced in fungi is not fully understood. Generally, tyrosine can be synthesized via two pathways: by prephenate dehydrogenase (TyrAp/PDH), a pathway found in most bacteria, or by arogenate dehydrogenase (TyrAa/ADH), a pathway found mainly in plants. Both enzymes require the cofactor NAD+ or NADP+ and typically are strongly feedback inhibited by tyrosine. Here, we biochemically characterized two TyrA enzymes from two distantly related fungi in the Ascomycota and Basidiomycota, Saccharomyces cerevisiae (ScTyrA/TYR1) and Pleurotus ostreatus (PoTyrA), respectively. We found that both enzymes favor the prephenate substrate and NAD+ cofactor in vitro. Interestingly, while PoTyrA was strongly inhibited by tyrosine, ScTyrA exhibited relaxed sensitivity to tyrosine inhibition. We further mutated ScTyrA at the amino acid residue that was previously shown to be involved in the substrate specificity of plant TyrAs; however, no changes in its substrate specificity were observed, suggesting that a different mechanism is involved in the TyrA substrate specificity of fungal TyrAs. The current findings provide foundational knowledge to further understand and engineer tyrosine-derived specialized pathways in fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Pleurotus/enzimologia , Saccharomyces cerevisiae/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Cinética , NAD/metabolismo , Oxirredutases/antagonistas & inibidores , Especificidade por Substrato , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...